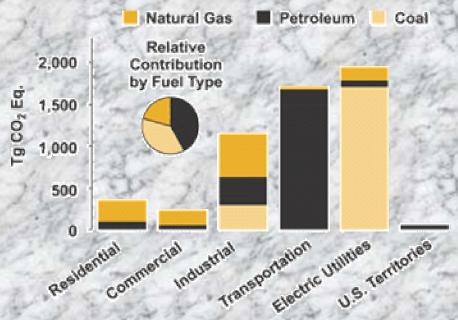
MI DEQ & RETAP Pollution Prevention (P2) Training


Energy Efficiency (E2)

Cam Metcalf, Executive Director
Richard Meisenhelder, P2 Specialist
Lori Hoetker, Technical Coordinator
Kentucky Pollution Prevention Center (KPPC)

Energy Efficiency as Pollution Prevention

☐ Energy Efficiency is achieving work with less energy/unit.

- ☐ Energy generation creates air pollution as a byproduct
- Protect natural resources by conservation.

Note: Utilities also includes emissions of 0.04 Tg CO₂ Eq. from geothermal based electricity generation

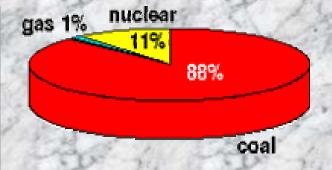
Source: EPA

Energy Efficiency as Pollution Prevention

New source equivalent emission rates are:

NO_x - 1.5 LBS/MWH

 $SO_2 - 3.0 LBS/MWH$


CO₂ - 880 LBS/MWH

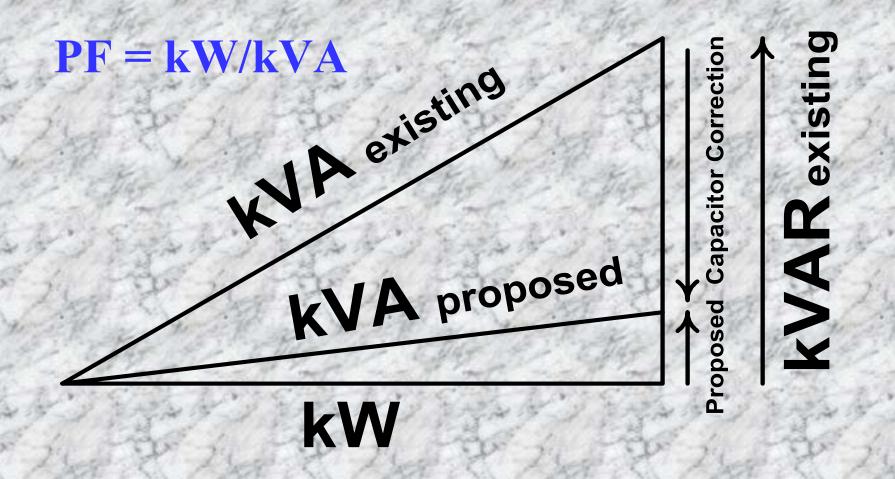
Detroit Power 1995 Data

1995 Emissions Summary

183	Total Emissions		Fossil Rate		Total Rate	
	Tons	Rank	lb/MWH	Rank	lb/MWH	Rank
NO _x	166,212	5	7.92	12	7.06	9
SO ₂	224,559	12	10.69	33	9.54	24
CO ₂	41.2 mill.	9	1,964	43	1,751	17

Detroit Power Fuel Source

Source: National Resources Defense Council


You Are Here

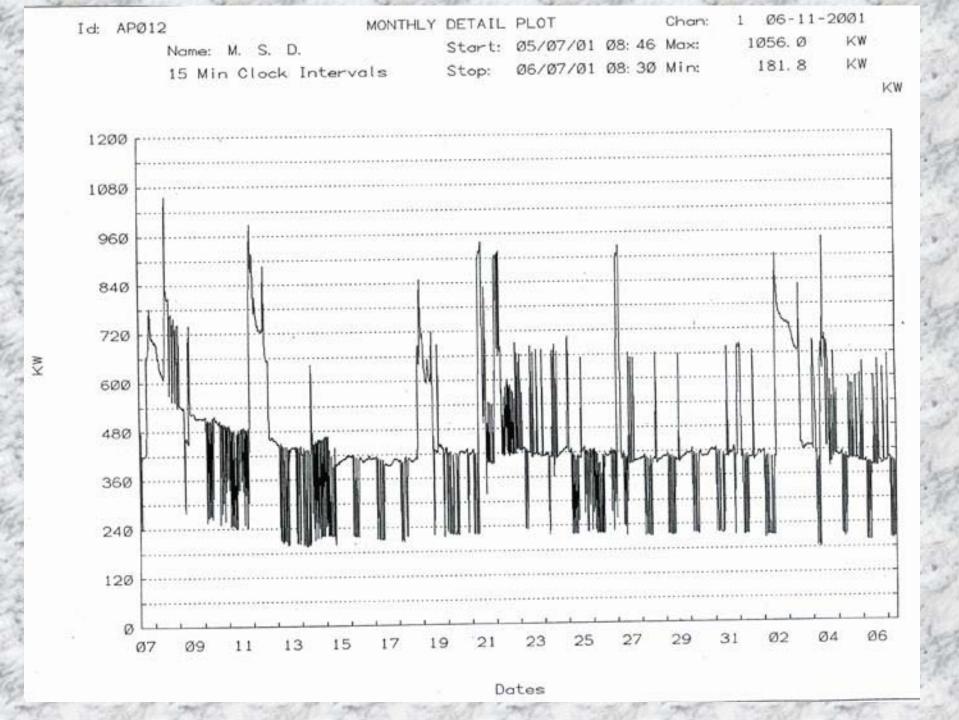
You Want To Be Here

E2 Opportunities

- □ Demand/Power Factor Improvements
- **□**Billing/Rate Structure
- **Reduce Electrical Use**
 - Compressed Air Systems
 - Lighting
 - Motors and Pumps
 - Boilers and Steam Systems
 - Heating, Ventilation & AC
 - System Controls

Power Factor: Components of Electrical Power

Power Factor


- ☐ Three effects of low power factor (<80%)
 - Robs distribution system of capacity
 - Higher currents = high voltage drop and electrical system losses
 - Billing penalties

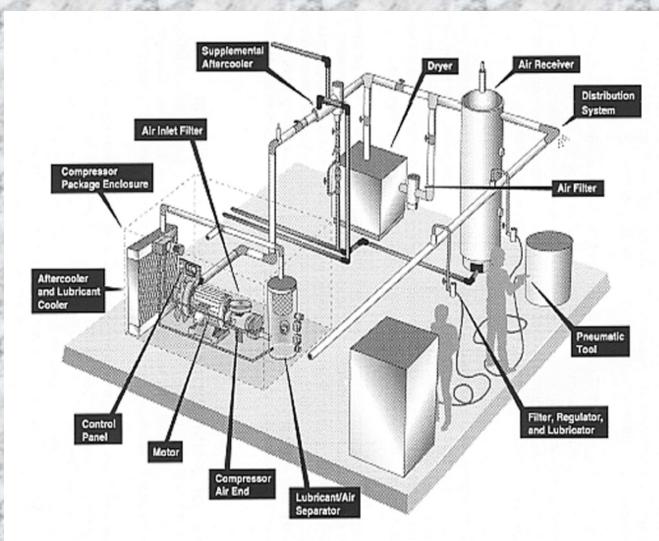
Power Factor: Opportunities

- **Shooting for PF > 95%**
- **Preventative Measures**
 - High-PF motors and lighting ballasts
- Current Applications
 - Capacitors!!

Demand/Load Factor

- **□Demand** = kWh/time = kW
 - Usually calculated in 15-minute intervals
 - Peak Demand = highest usage in any 15-minute interval
 - \Rightarrow Ex. 8000 kWh/0.25 hrs = 2000 kW demand
- ☐ Load Factor = avg. demand/peak demand
 - High load factor indicates relatively constant load and less potential for improvement

Demand Opportunities


- **Get Demand Profile**
 - Stagger Start-up Loads
 - Reschedule Loads
- **Description** Loads Loads
 - AC, Fans, Chillers, Compressors, Water Heaters
- **□** Check Rate Schedule

Air is Not Free!

- ☐ Air Compressors are the "hidden" utility
 - Consumes 7-8 Hp electricity to produce 1 Hp of compressed air.
 - \$100/yr to produce 1 CFM air flow.
 - \$398/yr to produce 1 psig pressure.
 - A 2 psig operating pressure rise increases the operating energy costs by 1%
 - Typical 'wire to work' efficiency is 10%
 - Few companies know the cost/CFM
 - Few companies know their CFM usage

Sources: Compressed Air Challenge.org; Air Power

Air Compressor System

Parts of System

- •Compressor
- •Controls
- Air/oil separator
- •Aftercooler
- •Dryer
- •Filter
- •Receiver
- •Filter
- •Regulator
- •Lubricator
- Point of use

Compressors

Reciprocating type

Rotary Screw type

Audit Questions - System

- ☐ Is the air being over treated?
- Where and how much is the leak loss?
- □ Can the system pressure be lowered?
- **☐** Is the control scheme right?
- □ Can you reuse the heat generated?

Audit Questions – Demand side

- ☐ Is the piping set up right?
 - Is abandoned equipment still there?
 - What is the pressure drop?
- **■What is the load profile?**
- ☐ Is the air being used inappropriately?
 - Would a blower work better?
 - Can electric tools be substituted?
 - Are workers using it instead of brooms?

Audit Questions – Supply side

- ☐ Is the compressor appropriate?
- ☐ Are filters clean & appropriate?
- **What is the after cooler efficiency?**
- **■** Is the dryer appropriate?
 - Size, pressure drop, efficiency
- **■** Are the automatic drains working?
- ☐ Is there enough receiver storage?

Opportunities

- **□** Reduce system pressure
- Correct piping backpressure points
- ☐ Minimize pressure drop in all ways
- Have a routine leak detection
 - Leaks should be held to 10% or less
- **■** Maintain the system
- **■Eliminate inappropriate uses**
- ☐ Heat recovery

Tools of the trade

- Ultrasonic leak detector
- **□**Pressure gauges
- ☐ Flow meters (mass, pitot tube, orifice, thermal, ect)
- **□**Amp meter
- **☐** Humidity meter
- **□**Common sense

Other Resources

- DOE
 - Compressed Air Challenge
 - ⇒ http://www.compressedairchallenge.org/
- **EPA**
 - Climatewise
 - ⇒http://www.epa.gov/climatewise/
- **National Resources Defense Council**
 - ⇒ http://www.nrdc.org/air/energy/utilprof/utilitys.asp
- CERES (Coalition for Environmentally Responsible Economies)
 - ⇒<u>http://www.ceres.org/publications/main.htm</u>

MI DEQ & RETAP Pollution Prevention (P2) Training

Next Steps: Let's Do an Onsite Assessment!

Cam Metcalf, Executive Director
Richard Meisenhelder, P2 Specialist
Lori Hoetker, Technical Coordinator
Kentucky Pollution Prevention Center (KPPC)

